Development of stable qubits and error correction in quantum computer architecture for superconducting quantum processors

Authors

  • Hengki Tamando Sihotang Institute of Computer Science, Sumatera Utara, Indonesia
  • Rimmar Siringoringo Institut Teknologi Dan Bisnis Indonesia, Indonesia
  • Fristi Riandari Institute of Computer Science, Indonesia
  • Jiang Lou Song Technical University of Munich, München, Germany
  • Lee Choi Sim Technical University of Munich, München, Germany

Keywords:

Coherence Time Extension, Quantum Computing, Quantum Error Correction, Stable Qubits, Superconducting Quantum Processors

Abstract

A comprehensive mathematical model formulation is presented, encompassing gate fidelity optimization, coherence time extension, stabilizer code evolution, and surface code implementation. The research demonstrates significant advancements in qubit stability, with a 7% increase in gate fidelity and a remarkable 50% extension in coherence time achieved through optimized gate operations and material improvements. Quantum error correction techniques, guided by the Lindblad master equation and the surface code, result in a 25% reduction in error rates, contributing to the overall stability of the quantum processor. The outcomes not only bring practical quantum computing closer to realization but also provide a foundation for future innovations. The research identifies avenues for continued optimization, including advanced gate designs, exploration of emerging qubit technologies, and the development of sophisticated error correction codes. Further interdisciplinary collaborations and investigations into scalable quantum architectures, materials science, and cryogenic engineering are essential for overcoming remaining challenges. The insights gained contribute to the advancement of fault-tolerant quantum computing systems, offering transformative capabilities for computation and technology.

References

P. S. Aithal, “Advances and new research opportunities in quantum computing technology by integrating it with other ICCT underlying technologies,” Int. J. Case Stud. Business, IT Educ., vol. 7, no. 3, pp. 314–358, 2023.

S. S. Gill et al., “Quantum computing: A taxonomy, systematic review and future directions,” Softw. Pract. Exp., vol. 52, no. 1, pp. 66–114, 2022.

O. O. Olatunji, P. A. Adedeji, and N. Madushele, “Quantum computing in renewable energy exploration: status, opportunities, and challenges,” Des. Anal. Appl. Renew. Energy Syst., pp. 549–572, 2021.

V. Lang and V. Lang, “Quantum Computing,” Digit. Fluen. Underst. Basics Artif. Intell. Blockchain Technol. Quantum Comput. Their Appl. Digit. Transform., pp. 51–111, 2021.

S. Pattanayak and S. Pattanayak, “Introduction to quantum computing,” Quantum Mach. Learn. with Python Using Cirq from Google Res. IBM Qiskit, pp. 1–43, 2021.

M. T. Dejpasand and M. Sasani Ghamsari, “Research trends in quantum computers by focusing on qubits as their building blocks,” Quantum Reports, vol. 5, no. 3, pp. 597–608, 2023.

B. Undseth et al., “Hotter is easier: unexpected temperature dependence of spin qubit frequencies,” Phys. Rev. X, vol. 13, no. 4, p. 41015, 2023.

S. Resch and U. R. Karpuzcu, “Quantum computing: an overview across the system stack,” arXiv Prepr. arXiv1905.07240, 2019.

A. D. Córcoles et al., “Challenges and opportunities of near-term quantum computing systems,” arXiv Prepr. arXiv1910.02894, 2019.

I. Siddiqi, “Engineering high-coherence superconducting qubits,” Nat. Rev. Mater., vol. 6, no. 10, pp. 875–891, 2021.

J. Rosenau, Thinking theory thoroughly: Coherent approaches to an incoherent world. Routledge, 2018.

P. Fuentes, “Error correction for reliable quantum computing,” arXiv Prepr. arXiv2202.08599, 2022.

P. Demirel, Q. C. Li, F. Rentocchini, and J. P. Tamvada, “Born to be green: new insights into the economics and management of green entrepreneurship,” Small Bus. Econ., vol. 52, pp. 759–771, 2019.

J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and C. Wang, “Protecting a bosonic qubit with autonomous quantum error correction,” Nature, vol. 590, no. 7845, pp. 243–248, 2021.

T. Williams, “Recent Discoveries in Quantum Computing: Progress and Challenges,” Int. J. Open Publ. Explor., vol. 10, no. 2, pp. 13–18, 2022.

N. P. De Leon et al., “Materials challenges and opportunities for quantum computing hardware,” Science (80-. )., vol. 372, no. 6539, p. eabb2823, 2021.

K. Wintersperger et al., “Neutral atom quantum computing hardware: performance and end-user perspective,” EPJ Quantum Technol., vol. 10, no. 1, p. 32, 2023.

V. Sood and R. P. Chauhan, “Archives of quantum computing: research progress and challenges,” Arch. Comput. Methods Eng., pp. 1–19, 2023.

M. Nofer, K. Bauer, O. Hinz, W. van der Aalst, and C. Weinhardt, “Quantum Computing,” Bus. Inf. Syst. Eng., vol. 65, no. 4, pp. 361–367, 2023.

M. Kjaergaard et al., “Superconducting qubits: Current state of play,” Annu. Rev. Condens. Matter Phys., vol. 11, pp. 369–395, 2020.

A. Vepsäläinen et al., “Improving qubit coherence using closed-loop feedback,” Nat. Commun., vol. 13, no. 1, p. 1932, 2022.

Z. Lou, L. Wang, K. Jiang, and G. Shen, “Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors,” Nano Today, vol. 26, pp. 176–198, 2019.

C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Appl. Phys. Rev., vol. 6, no. 2, 2019.

A. Owens, “Toward a logical qubit demonstration with trapped ions in a scalable quantum computing architecture,” 2022.

A. Bermudez, X. Xu, M. Gutiérrez, S. C. Benjamin, and M. Müller, “Fault-tolerant protection of near-term trapped-ion topological qubits under realistic noise sources,” Phys. Rev. A, vol. 100, no. 6, p. 62307, 2019.

A. S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K. Tuckett, and S. Puri, “Practical quantum error correction with the XZZX code and Kerr-cat qubits,” PRX Quantum, vol. 2, no. 3, p. 30345, 2021.

S. R. Lee, P. A. Sharma, A. L. Lima-Sharma, W. Pan, and T. M. Nenoff, “Topological quantum materials for realizing Majorana quasiparticles,” Chem. Mater., vol. 31, no. 1, pp. 26–51, 2018.

A. K. Fedorov, N. Gisin, S. M. Beloussov, and A. I. Lvovsky, “Quantum computing at the quantum advantage threshold: a down-to-business review,” arXiv Prepr. arXiv2203.17181, 2022.

M. Saadoon, S. H. A. Hamid, H. Sofian, H. H. M. Altarturi, Z. H. Azizul, and N. Nasuha, “Fault tolerance in big data storage and processing systems: A review on challenges and solutions,” Ain Shams Eng. J., vol. 13, no. 2, p. 101538, 2022.

Z. Ji, W. Yao, W. Wei, H. Song, and H. Pi, “Deep multi-level semantic hashing for cross-modal retrieval,” IEEE Access, vol. 7, pp. 23667–23674, 2019.

P. Webster, M. Vasmer, T. R. Scruby, and S. D. Bartlett, “Universal fault-tolerant quantum computing with stabilizer codes,” Phys. Rev. Res., vol. 4, no. 1, p. 13092, 2022.

E. Charbon, “Cryo-CMOS electronics for quantum computing: Bringing classical electronics closer to qubits in space and temperature,” IEEE Solid-State Circuits Mag., vol. 13, no. 2, pp. 54–68, 2021.

E. Charbon, M. Babaie, A. Vladimirescu, and F. Sebastiano, “Cryogenic CMOS circuits and systems: Challenges and opportunities in designing the electronic interface for quantum processors,” IEEE Microw. Mag., vol. 22, no. 1, pp. 60–78, 2020.

E. H. Lock, J. Lee, D. S. Choi, R. G. Bedford, S. P. Karna, and A. K. Roy, “Materials Innovations for Quantum Technology Acceleration: A Perspective,” Adv. Mater., p. 2201064, 2023.

V. Lordi and J. M. Nichol, “Advances and opportunities in materials science for scalable quantum computing,” MRS Bull., vol. 46, pp. 589–595, 2021.

G. G. La Guardia, “Quantum error correction,” Quantum Sci. Technol. Cham Springer, 2020.

K. ASWANTH, “QUANTUM ERROR CORRECTING CODES.” National Institute of Technology Karnataka, Surathkal, 2020.

T. A. Brun, “Quantum error correction,” arXiv Prepr. arXiv1910.03672, 2019.

I. B. Djordjevic, Quantum information processing, quantum computing, and quantum error correction: an engineering approach. Academic Press, 2021.

J. F. Marques et al., “Logical-qubit operations in an error-detecting surface code,” Nat. Phys., vol. 18, no. 1, pp. 80–86, 2022.

M. Schlosshauer, “Quantum decoherence,” Phys. Rep., vol. 831, pp. 1–57, 2019.

C. Ryan-Anderson et al., “Realization of real-time fault-tolerant quantum error correction,” Phys. Rev. X, vol. 11, no. 4, p. 41058, 2021.

Y. Lu, J. Y. Sim, J. Suzuki, B.-G. Englert, and H. K. Ng, “Direct estimation of minimum gate fidelity,” Phys. Rev. A, vol. 102, no. 2, p. 22410, 2020.

F. Leymann and J. Barzen, “The bitter truth about gate-based quantum algorithms in the NISQ era,” Quantum Sci. Technol., vol. 5, no. 4, p. 44007, 2020.

M. Schöndorf, “Qubit measurement and coupling strategies and their applications,” 2020.

Downloads

Published

2023-11-30

How to Cite

Sihotang, H. T., Siringoringo , R., Riandari, F., Song , J. L., & Sim, L. C. (2023). Development of stable qubits and error correction in quantum computer architecture for superconducting quantum processors. Journal of Computer Science and Research (JoCoSiR), 1(4), 104–109. Retrieved from http://journal.aptikomsumut.org/index.php/jocosir/article/view/27