A Study on Implementation and Performance Analysis of Basic and Advanced Image Processing Techniques Using Python and OpenCV
DOI:
https://doi.org/10.65126/jocosir.v2i2.60Keywords:
Digital Image Processing, Opencv, Grayscale, Morphological Operation, ConvolutionAbstract
Abstract— Digital image processing plays a crucial role in artificial intelligence and computer vision, with widespread applications in healthcare, agriculture, security, industry, and transportation. This research focuses on implementing both basic and advanced image processing methods using Python and the OpenCV library within a desktop application. The main problem addressed is the lack of an integrated, structured approach that bridges basic and advanced techniques, limiting users' comprehensive understanding of image processing workflows. The objective is to design a complete system that allows step-by-step processing, starting from grayscale conversion, binarization, arithmetic and logical operations, to convolution and morphological transformations such as Sobel edge detection and erosion. The proposed application utilizes Tkinter for the user interface, enabling users to upload images, apply various processing techniques, and analyze results interactively. The system also includes histogram visualization and equalization to enhance contrast. Findings show that the implemented methods effectively transform images in accordance with theoretical expectations, such as edge enhancement and shape simplification. The integration of these methods into a single, user-friendly platform supports both educational and applied uses. The contribution of this research lies in its practical demonstration of digital image processing techniques, providing a comprehensive and accessible reference for developers, researchers, and students. Despite its achievements, the system lacks advanced segmentation and real-time capabilities, which are suggested for future development through integration of adaptive methods and machine learning techniques.
References
X. Chen et al., “Recent advances and clinical applications of deep learning in medical image analysis,” Med. Image Anal., vol. 79, p. 102444, 2022.
K. Khairunnisa et al., Image Processing. PT. Green Pustaka Indonesia, 2025.
R. Dijaya and H. Setiawan, “Buku Ajar Pengolahan Citra Digital,” Umsida Press, pp. 1–85, 2023.
W. Burger and M. J. Burge, Digital image processing: An algorithmic introduction. Springer Nature, 2022.
E. A. Jalil, P. Wahyuningsih, N. Umar, M. Risal, and A. E. F. Anatasya, Buku Ajar Pengolahan Citra Berbasis Open Source. PT. Sonpedia Publishing Indonesia, 2024.
S. Suganyadevi, V. Seethalakshmi, and K. Balasamy, “A review on deep learning in medical image analysis,” Int. J. Multimed. Inf. Retr., vol. 11, no. 1, pp. 19–38, 2022.
C.-H. Choi, J. Kim, J. Hyun, Y. Kim, and B. Moon, “Face detection using haar cascade classifiers based on vertical component calibration,” Human-centric Comput. Inf. Sci., vol. 12, no. 11, pp. 1–17, 2022.
M. D. A. HASAN, T. Bhargav, V. SANDEEP, V. S. A. I. REDDY, and R. AJAY, “Image classification using convolutional neural networks,” Int. J. Mech. Eng. Res. Technol., vol. 16, no. 2, pp. 173–181, 2024.
Y. Liu, H. Pu, and D.-W. Sun, “Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices,” Trends Food Sci. Technol., vol. 113, pp. 193–204, 2021.
S. Cong and Y. Zhou, “A review of convolutional neural network architectures and their optimizations,” Artif. Intell. Rev., vol. 56, no. 3, pp. 1905–1969, 2023.
A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex Intell. Syst., vol. 7, no. 5, pp. 2179–2198, 2021.
R. A. Saputra, R. Reskal, and F. M. Wahyuni, “Segmentasi pada plat kendaraan dinas dengan metode deteksi tepi canny, prewitt, sobel, & roberts,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 6, no. 1, pp. 328–339, 2022.
H. Fitriyah and R. C. Wihandika, Dasar-Dasar Pengolahan Citra Digital. Universitas Brawijaya Press, 2021.
W. Andriyani et al., PENGANTAR TEKNOLOGI KOMPUTER. Penerbit Widina, 2025.
M. Malau, S. Hutahaean, and G. Siboro, “Metode Steganografi EOF untuk Penyisipan Pesan Teks Tersembunyi,” J. QUANCOM QUANTUM Comput. J., vol. 3, no. 1, pp. 18–24, 2025.
N. Nurhadi et al., BUKU AJAR LOGIKA & ALGORITMA. PT. Sonpedia Publishing Indonesia, 2023.
M. R. Pratama, S. Z. Hidayat, A. R. Nuruddin, H. W. Niamaputri, and F. T. Anggraeny, “Optimasi Peningkatan Kontras Gambar Menggunakan Interval-Valued Intuitionistic Fuzzy Sets dan Contrast Limited Adaptive Histogram Equalization (CLAHE),” in Prosiding Seminar Implementasi Teknologi Informasi dan Komunikasi, 2025, pp. 307–317.
A. M. Ahmad and C. A. Sari, “Perbandingan Kinerja Hough Transform, Watershed dengan Gabor Wavelet Filter dalam Pengenalan Iris Mata,” J. Apl. Teknol. dan Komputasi, vol. 1, no. 1, pp. 33–40, 2025.
S. Bhutada, N. Yashwanth, P. Dheeraj, and K. Shekar, “Opening and closing in morphological image processing,” World J. Adv. Res. Rev., vol. 14, no. 3, pp. 687–695, 2022.
Y. Apridiansyah, R. Toyib, and A. Wijaya, “Metode Otsu dan Mathematical Morphology Dalam Segmentasi Region Karakter Plat Nomor Kendaraan,” J. Appl. Comput. Sci. Technol., vol. 3, no. 1, pp. 134–143, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Syaiful Rahman Lubis, Muhammad Iqbal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
