Sentiment Analysis of Indonesian TikTok Comments Using TF‑IDF with Naive Bayes and SVM
Keywords:
sentiment analysis, TikTok comments,, Indonesian language,, TF‑IDF, Naive Bayes, SVMAbstract
This study aims to develop an automatic sentiment classification model for Indonesian TikTok comments using Term Frequency–Inverse Document Frequency (TF‑IDF) with Naive Bayes and Support Vector Machine (SVM). Fifteen thousand comments were collected from public TikTok videos and manually labeled as positive, negative, and neutral. Data preprocessing included case folding, tokenization, stopword removal, and stemming (Nazief‑Adriani algorithm). TF‑IDF weighting transformed text into vectors, then used to train both classifiers. Performance was evaluated using accuracy, precision, recall, and F1-score trough 5-fold cross-validation. Result show SVM outperforms Naive Bayes with 92.8% accuracy versus 83%. Findings confirm that TF-IDF combined with SVM produces more relieble result for short Indonesian text classification, offering valuable insights for social media monitoring applications.
References
Arsyah, U. I., et al. (2024). Twitter Sentiment Analysis of Public Opinions Using SVM and TF‑IDF. IJCS.
Aispurs, V. (2024). Exploring Sentiment Analysis on TikTok Social Media Platform. Univ. Stockholm.
Prihatini, P. M. (2023). Feature Extraction for Indonesian Text Classification. Proc. ICAS.
Ariyus, D., et al. (2024). Enhancing Sentiment Analysis of TikTok Comments Using FastText and Bi‑LSTM. ETASR.
Pebriana, S., & Sugianto, C. A. (2025). Sentiment Analysis of Netizen Opinions on TikTok Toward iPhone. J‑AI SE. https://doi.org/10.30811/jaise.v5i3.7011
Rahmadani, P. S. (2022). Tiktok Social Media Sentiment Analysis Using Naïve Bayes Classifier. Sinkron Journal, 7 (3), 995‑999. https://doi.org/10.33395/sinkron.v7i3.11579
Faddilla A. D. & Pratama I. (2025). Sentiment Analysis of TikTok Tokopedia Seller Center Application Using SVM and Naive Bayes. IJSECS. https://doi.org/10.35870/ijsecs.v5i1.3463
Hidayah, I. A., Kusumawati, R., Abidin, Z., & Imamudin, M. (2024). Analysis of public sentiment towards the Tiktok application using the Naive Bayes Algorithm and support Vector machine. Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 881-891. https://doi.org/10.47709/cnahpc.v6i2.3990
Silitonga, P. D., Hasibuan, M., Situmorang, Z., & Purba, D. (2023). Comparison of TikTok user sentiment analysis accuracy with Naïve Bayes and support vector machine. International Journal, 12(1).
Aji, S., Sundari, J., Yunita, Imron, & Pratama, O. (2023, May). The algorithm comparison of support vector machine and Naive Bayes in sentiment analyzing the Tiktok application. In 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021: Innovating Scientific Learning for Deep Communication (Vol. 2714, No. 1, p. 020015). AIP Publishing LLC. https://doi.org/10.1063/5.0129009
Akbar, M. R., & Defit, S. (2024). Metode Support Vector Machine dan Naïve Bayes Untuk Analisis Santimen Ibu Kota Nusantara. Jurnal KomtekInfo, 323-331. https://doi.org/10.35134/komtekinfo.v11i4.579
Ariyus, D., Manongga, D., & Sembiring, I. (2024). Enhancing Sentiment Analysis of Indonesian Tourism Video Content Commentary on TikTok: A FastText and Bi-LSTM Approach. Engineering, Technology & Applied Science Research, 14(6), 18020-18028. https://doi.org/10.48084/etasr.8859
Rahmadani, P. S., Tampubolon, F. C., Jannah, A. N., Hutabarat, N. L. H., & Simarmata, A. M. (2022). Tiktok Social Media Sentiment Analysis Using the Nave Bayes Classifier Algorithm. Sinkron: jurnal dan penelitian teknik informatika, 6(3), 995-999.
33395/sinkron.v7i3.11579
Akbar, M. R., & Defit, S. (2024). Metode Support Vector Machine dan Naïve Bayes Untuk Analisis Santimen Ibu Kota Nusantara. Jurnal KomtekInfo, 323-331.https://doi.org/10.35134/komtekinfo.v11i4.579
Aji, S., Sundari, J., Yunita, Imron, & Pratama, O. (2023, May). The algorithm comparison of support vector machine and Naive Bayes in sentiment analyzing the Tiktok application. In 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021: Innovating Scientific Learning for Deep Communication (Vol. 2714, No. 1, p. 020015). AIP Publishing LLC. https://doi.org/10.1063/5.0129009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rezkinah Rambe, Muhammad Iqbal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
